OpenStudioCore:analysis
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Pages
Classes | Typedefs | Functions
openstudio::analysis Namespace Reference

Classes

class  Algorithm
 Algorithm is an abstract AnalysisObject that is the base class for all OpenStudioAlgorithms and DakotaAlgorithms. More...
 
class  AlgorithmOptions
 AlgorithmOptions defines the basic options that all Algorithms are assumed to have, that is, a maximum number of iterations and a maximum number of simulations. More...
 
class  Analysis
 Analysis is a AnalysisObject that contains an entire analysis. More...
 
struct  AnalysisJSONLoadResult
 
class  AnalysisObject
 AnalysisObject is the base class for all major classes in the openstudio::analysis namespace. More...
 
struct  AnalysisSerializationOptions
 
class  AnalysisSerializationScope
 Enum to indicate how much of the analysis should be written out to JSON. More...
 
class  BetaDistribution
 BetaDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a continuous variable. More...
 
class  BinomialDistribution
 BinomialDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a discrete variable. More...
 
class  ContinuousVariable
 A ContinuousVariable is an InputVariable whose value is a real number, perhaps restricted to lie within some bounds. More...
 
class  DakotaAlgorithm
 DakotaAlgorithm is an Algorithm that works with the third-party software package DAKOTA (http://dakota.sandia.gov/software.html) to generate new data points. More...
 
class  DakotaAlgorithmOptions
 DakotaAlgorithmOptions is an AlgorithmOptions class for DakotaAlgorithms. More...
 
class  DakotaFunctionType
 List of function types DAKOTA expects us to evaluate. More...
 
class  DakotaParametersFile
 DakotaParametersFile is an interface to the files that DAKOTA drops on the filesystem to indicate that we should create and run a new DataPoint. More...
 
class  DataPoint
 DataPoint is an AnalysisObject that describes a single simulation run/to be run for a given Analysis. More...
 
class  DataPointRunType
 List of DataPoint run types. More...
 
class  DDACEAlgorithm
 DDACEAlgorithm is a DakotaAlgorithm that implements dakotaInFileDescription so as to specify a particular Distributed Design and Analysis for Computer Experiments (DDACE) method and related options. More...
 
class  DDACEAlgorithmOptions
 DDACEAlgorithmOptions is a DakotaAlgorithmOptions class that defines options specific to DDACEAlgorithm. More...
 
class  DDACEAlgorithmType
 Lists the types of sampling methods offered by the DDACE libary. More...
 
class  DesignOfExperiments
 DesignOfExperiments is an OpenStudioAlgorithm. More...
 
class  DesignOfExperimentsOptions
 DesignOfExperimentsOptions is an AlgorithmOptions class for use with DesignOfExperiments. More...
 
class  DesignOfExperimentsType
 
class  DiscreteVariable
 A DiscreteVariable is an InputVariable whose value is a finite list of values mappable to a range of integers. More...
 
class  ExponentialDistribution
 ExponentialDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a continuous variable. More...
 
class  FrechetDistribution
 FrechetDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a continuous variable. More...
 
class  FSUDaceAlgorithm
 FSUDaceAlgorithm is a DakotaAlgorithm that implements dakotaInFileDescription so as to specify a particular Florida State University Design and Analysis of Computer Experiments method and related options. More...
 
class  FSUDaceAlgorithmOptions
 FSUDaceAlgorithmOptions is a DakotaAlgorithmOptions class that defines options specific to FSUDaceAlgorithm. More...
 
class  FSUDaceAlgorithmType
 Lists the types of sampling methods offered by the FSU Dace libary. More...
 
class  FSUDaceCvtTrialType
 Lists the types of trials that may be used with the FSUDaceAlgorithmType::cvt. More...
 
class  Function
 Function is an abstract AnalysisObject that registers a set of Variables whose values can be retrieved from a DataPoint, and requires classes derived from it to implement Function::getValue. More...
 
class  GammaDistribution
 GammaDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a continuous variable. More...
 
class  GenericUncertaintyDescription
 GenericUncertaintyDescription is an UncertaintyDescription interface for use by APIs and for serialization/deserialization. More...
 
class  GeometricDistribution
 GeometricDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a discrete variable. More...
 
class  GumbelDistribution
 GumbelDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a continuous variable. More...
 
class  HistogramBinDistribution
 HistogramBinDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a continuous variable. More...
 
class  HistogramPointDistribution
 HistogramPointDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a discrete variable. More...
 
class  HypergeometricDistribution
 HypergeometricDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a discrete variable. More...
 
class  InputVariable
 
class  LinearFunction
 LinearFunction is a Function of the form a1*x1 + a2*x2 + ... More...
 
class  LognormalDistribution
 LognormalDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a continuous variable. More...
 
class  LoguniformDistribution
 LoguniformDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a continuous variable. More...
 
class  Measure
 Measure is an AnalysisObject that defines one particular value of a DiscreteVariable. More...
 
class  MeasureGroup
 MeasureGroup is an DiscreteVariable that takes on discrete values, each of which is described by a Measure. More...
 
class  NegativeBinomialDistribution
 NegativeBinomialDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a discrete variable. More...
 
class  NormalDistribution
 NormalDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a continuous variable. More...
 
class  NullMeasure
 NullMeasure is a Measure that does not change the input model in any way. More...
 
class  OpenStudioAlgorithm
 OpenStudioAlgorithm is an Algorithm whose logic is directly encoded in the implementation of createNextIteration. More...
 
class  OptimizationDataPoint
 OptimizationDataPoint is a DataPoint for use with OptimizationProblems . More...
 
struct  OptimizationDataPointObjectiveFunctionLess
 Predicate struct for comparing OptimizationDataPoints by objective function value. More...
 
class  OptimizationProblem
 OptimizationProblem is a Problem that has objective functions in addition to variables, response functions, and a simulation workflow. More...
 
class  OutputAttributeVariable
 OutputAttributeVariable is an OutputVariable that accesses attributes written to XML as part of a simulation post-processing step. More...
 
class  OutputVariable
 
class  ParameterStudyAlgorithm
 ParameterStudyAlgorithm is a DakotaAlgorithm that implements dakotaInFileDescription so as to specify a particular Parameter Study method and related options. More...
 
class  ParameterStudyAlgorithmOptions
 ParameterStudyAlgorithmOptions is a DakotaAlgorithmOptions that defines options specific to ParameterStudyAlgorithm. More...
 
class  ParameterStudyAlgorithmType
 Lists the types of sampling methods offered by the Parameter Study library. More...
 
class  PoissonDistribution
 PoissonDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a discrete variable. More...
 
class  Problem
 Problem is an AnalysisObject that contains a (building energy) problem formulation stated as a vector of workflow steps (input variables or runmanager::WorkItems), and a vector of response functions. More...
 
class  PSUADEDaceAlgorithm
 PSUADEDaceAlgorithm is a DakotaAlgorithm that implements dakotaInFileDescription so as to specify a particular Problem Solving Environment for Uncertainty Analysis and Design Exploration Morris One-At-A-Time method and related options. More...
 
class  PSUADEDaceAlgorithmOptions
 PSUADEDaceAlgorithmOptions is a DakotaAlgorithmOptions that defines options specific to PSUADEDaceAlgorithm. More...
 
class  RubyContinuousVariable
 RubyContinuousVariable is a ContinuousVariable. More...
 
class  RubyMeasure
 RubyMeasure is a Measure that modifies a model (OSM or IDF file) using a Ruby script. More...
 
class  SamplingAlgorithm
 SamplingAlgorithm is a DakotaAlgorithm that implements dakotaInFileDescription so as to specify a particular Sampling method and related options. More...
 
class  SamplingAlgorithmOptions
 SamplingAlgorithmOptions is a DakotaAlgorithmOptions class that defines options specific to SamplingAlgorithm. More...
 
class  SamplingAlgorithmRNGType
 Lists the types of pseudo-random number generators that may be used with the Sampling library. More...
 
class  SamplingAlgorithmSampleType
 Lists the types of sampling methods offered by the Sampling libary. More...
 
class  SequentialSearch
 SequentialSearch is an OpenStudioAlgorithm that can be used to solve OptimizationProblems with two objective functions and discrete variables. More...
 
class  SequentialSearchOptions
 SequentialSearchOptions is an options class for SequentialSearch, derived from AlgorithmOptions. More...
 
class  TriangularDistribution
 TriangularDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a continuous variable. More...
 
class  UncertaintyDescription
 UncertaintyDescription is an abstract base class that can be used to append uncertainty information to a Variable. More...
 
class  UncertaintyDescriptionType
 List of all the uncertainty types supported by DAKOTA. More...
 
class  UncertaintyType
 List of uncertainty types. More...
 
class  UniformDistribution
 UniformDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a continuous variable. More...
 
class  Variable
 Variable is an AnalysisObject that serves as a base class for InputVariable and OutputVariable. More...
 
class  VariableValueType
 List of variable numeric types. More...
 
class  WeibullDistribution
 WeibullDistribution is an UncertaintyDescription that can apply aleatory uncertainty to a continuous variable. More...
 
class  WorkflowStep
 WorkflowStep is an AnalysisObject that describes an individual step in a Problem's overall Workflow. More...
 
struct  WorkflowStepJob
 WorkflowStepJob is a structure for articulating the detailed runtime results associated with each WorkflowStep as executed for a particular DataPoint. More...
 

Typedefs

typedef boost::optional
< AnalysisSerializationScope
OptionalAnalysisSerializationScope
 
typedef boost::optional
< DakotaFunctionType
OptionalDakotaFunctionType
 
typedef boost::optional
< DataPointRunType
OptionalDataPointRunType
 
typedef boost::optional
< DDACEAlgorithmType
OptionalDDACEAlgorithmType
 
typedef boost::optional
< DesignOfExperimentsType
OptionalDesignOfExperimentsType
 
typedef boost::optional
< FSUDaceAlgorithmType
OptionalFSUDaceAlgorithmType
 
typedef boost::optional
< FSUDaceCvtTrialType
OptionalFSUDaceCvtTrialType
 
typedef boost::optional
< ParameterStudyAlgorithmType
OptionalParameterStudyAlgorithmType
 
typedef boost::optional
< SamplingAlgorithmRNGType
OptionalSamplingAlgorithmRNGType
 
typedef boost::optional
< SamplingAlgorithmSampleType
OptionalSamplingAlgorithmSampleType
 
typedef boost::optional
< UncertaintyDescriptionType
OptionalUncertaintyDescriptionType
 
typedef boost::optional
< UncertaintyType
OptionalUncertaintyType
 
typedef boost::optional
< VariableValueType
OptionalVariableValueType
 
typedef std::vector
< UncertaintyDescriptionType
UncertaintyDescriptionTypeVector
 

Functions

std::ostream & operator<< (std::ostream &os, const DesignOfExperimentsType &e)
 
std::ostream & operator<< (std::ostream &os, const DakotaFunctionType &e)
 
std::ostream & operator<< (std::ostream &os, const SamplingAlgorithmSampleType &e)
 
std::ostream & operator<< (std::ostream &os, const FSUDaceAlgorithmType &e)
 
std::ostream & operator<< (std::ostream &os, const ParameterStudyAlgorithmType &e)
 
std::ostream & operator<< (std::ostream &os, const DDACEAlgorithmType &e)
 
std::ostream & operator<< (std::ostream &os, const VariableValueType &e)
 
std::ostream & operator<< (std::ostream &os, const AnalysisSerializationScope &e)
 
std::ostream & operator<< (std::ostream &os, const SamplingAlgorithmRNGType &e)
 
std::ostream & operator<< (std::ostream &os, const FSUDaceCvtTrialType &e)
 
std::ostream & operator<< (std::ostream &os, const DataPointRunType &e)
 
std::ostream & operator<< (std::ostream &os, const UncertaintyType &e)
 
std::ostream & operator<< (std::ostream &os, const UncertaintyDescriptionType &e)
 
bool saveJSON (const std::vector< DataPoint > &dataPoints, const openstudio::path &p, bool overwrite=false)
 Save a vector of DataPoints to a JSON file. More...
 
std::vector< DataPointtoDataPointVector (const openstudio::path &jsonFilepath)
 Deserialize JSON file of a vector of DataPoints. More...
 
std::vector< DataPointtoDataPointVector (const std::string &json)
 Deserialize JSON string of a vector of DataPoints. More...
 
std::vector< DataPointtoDataPointVector (std::istream &json)
 
std::string toJSON (const std::vector< DataPoint > &dataPoints)
 Print a vector of DataPoints to std::string in JSON format. More...
 
std::ostream & toJSON (const std::vector< DataPoint > &dataPoints, std::ostream &os)
 

Typedef Documentation

Function Documentation

std::ostream& openstudio::analysis::operator<< ( std::ostream &  os,
const DesignOfExperimentsType &  e 
)
inline
std::ostream& openstudio::analysis::operator<< ( std::ostream &  os,
const DakotaFunctionType &  e 
)
inline
std::ostream& openstudio::analysis::operator<< ( std::ostream &  os,
const SamplingAlgorithmSampleType &  e 
)
inline
std::ostream& openstudio::analysis::operator<< ( std::ostream &  os,
const FSUDaceAlgorithmType &  e 
)
inline
std::ostream& openstudio::analysis::operator<< ( std::ostream &  os,
const ParameterStudyAlgorithmType &  e 
)
inline
std::ostream& openstudio::analysis::operator<< ( std::ostream &  os,
const DDACEAlgorithmType &  e 
)
inline
std::ostream& openstudio::analysis::operator<< ( std::ostream &  os,
const VariableValueType &  e 
)
inline
std::ostream& openstudio::analysis::operator<< ( std::ostream &  os,
const AnalysisSerializationScope &  e 
)
inline
std::ostream& openstudio::analysis::operator<< ( std::ostream &  os,
const SamplingAlgorithmRNGType &  e 
)
inline
std::ostream& openstudio::analysis::operator<< ( std::ostream &  os,
const FSUDaceCvtTrialType &  e 
)
inline
std::ostream& openstudio::analysis::operator<< ( std::ostream &  os,
const DataPointRunType &  e 
)
inline
std::ostream& openstudio::analysis::operator<< ( std::ostream &  os,
const UncertaintyType &  e 
)
inline
std::ostream& openstudio::analysis::operator<< ( std::ostream &  os,
const UncertaintyDescriptionType &  e 
)
inline
bool openstudio::analysis::saveJSON ( const std::vector< DataPoint > &  dataPoints,
const openstudio::path &  p,
bool  overwrite = false 
)

Save a vector of DataPoints to a JSON file.

Used for batch upload to openstudio-server.

std::vector<DataPoint> openstudio::analysis::toDataPointVector ( const openstudio::path &  jsonFilepath)

Deserialize JSON file of a vector of DataPoints.

std::vector<DataPoint> openstudio::analysis::toDataPointVector ( const std::string &  json)

Deserialize JSON string of a vector of DataPoints.

std::vector<DataPoint> openstudio::analysis::toDataPointVector ( std::istream &  json)

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

std::string openstudio::analysis::toJSON ( const std::vector< DataPoint > &  dataPoints)

Print a vector of DataPoints to std::string in JSON format.

Used for batch upload to openstudio-server.

std::ostream& openstudio::analysis::toJSON ( const std::vector< DataPoint > &  dataPoints,
std::ostream &  os 
)

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.